
Understanding and Improving Knowledge Distillation for 
Quantization-Aware Training of Large Transformer Encoders

2. Motivation

1Minsoo Kim, 2Sihwa Lee, 3Sukjin Hong, 3Du-Seong Chang, and 1,2Jungwook Choi*

Paper Code

1Department of Electronic Engineering, Hanyang University
2Department of Artificial Intelligence, Hanyang University

3KT

1,2{minsoo2333, macto94, 
choij}@hanyang.ac.kr

3{sukjin.hong, dschang}@kt.com

-10

10

30

50

0 20 40 60 80 100 120
Token Number

FP-min-max Map-min-max Output-min-max

-50

-30

-10

10

0 20 40 60 80 100 120

FP-min-max Map-min-max Output-min-max

-60

-40

-20

0

0 5 10 15

FP-min-max Output-min-max Map-min-max

-5

0

5

0 5 10 15
Token Number

FP-min-max Output-min-max Map-min-max

Model Compression

🤔

• Analyze prior Knowledge Distillation (KD) techniques for 
Quantization-Aware Training (QAT).

• Revealing task-dependent attention characteristics from 
weight quantization of large Transformer encoder.

• Propose new KD methods for QAT on Large Transformer 
Encoders.

3-1. All-Layer Distillation for QAT

Model Quantization

Knowledge Distillation

1. Summary
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5. Experimental Results
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• Layer-wise Distillation helps QAT of quantized student model.

3-2. Improve KD on Self-Attention Generation

FP SA-Map w/o QAT Baseline Ours 

Task Dependent Charateristics

SA-PROP
(attention-output loss)

SA-GEN
(attention-map loss)
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SA-PROP Min-Max Range Comparison (Teacher vs Student)

• SA-PROP show distinct features depending on NLU tasks.
• Task-dependent attention characteristics are intensified when 

the model size increases.
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KD-QAT Results on GLUE benchmark (8-bit Activation, 2-bit Weight)

BERT-base (110M param, Compression rate is 14.9x)

• In the BERT-base, attention-map loss benefits all the tasks in Case-1 and Case-2.
• In the BERT-large, attention-output loss significantly boosts the accuracy of Case-1.
• Overall, the unified loss facilitates QAT accuracy in every tasks. 

• Case-1 (†): RTE, CoLA, STS-B
• Case-2 (⋆): SST-2, QNLI, MNLI, QQP
• Baseline: TernaryBERT

• KL-Div loss function with self-attention map maintain the relative 
importance of attention across tokens (attention-map loss).

BERT-large (340M param, Compression rate is 15.4x)

ULM-large (280M param, Compression rate is 15.9x)
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