

Teacher Intervention: Improving Convergence of Quantization Aware Training for Ultra-Low Precision Transformers

¹Minsoo Kim, ²Kyuhong Shim, ¹Seongmin Park, ²Wonyong Sung, and ¹Jungwook Choi*

¹Department of Electronic Engineering, Hanyang University ²Department of Electrical and Computer Engineering, Seoul National University minsoo2333@hanyang.ac.kr

Paper

Code

1. Background and Motivation

- Quantization (QAT) & Knowledge Distillation (KD)
 - : KD provides extra guidance for low precision (2-bit) quantization

Prior works suffer noticeable accuracy degradation and require **increased iterations** for fine-tuning in few-sample tasks

Task	QQP	CoLA	RTE
(Num. Samples)	(364K)	8.5K	(2.5K)
Full precision	87.7	58.0	73.3
(Fine-tune iters.)	(34,113)	(1,650)	(234)
Ternary weight	87.8	49.6	68.5
(Fine_tune iters)	$(34\ 113)$	(1.650)	(234)

BERT (28MB)

Quantization Aware Training (QAT) with **Knowledge Distillation** [Zhang et al, TernaryBERT, EMNLP 2020]

2. Methods

()		(-,)	
Ternary Weight	-	58.29	73.3
(Fine-tune iters. w/ DA)	-	(20,862)	(1,654)

QAT performance of TernaryBERT and number of iterations

MSE Loss at the output of Transformer layers

V: Propagating impact of quantization error along the layers

Rapidly Converge to FP!

60

Case 1: Intervene student's attention output with the teacher's (TI-O) + Quantize all \Rightarrow Propagation of Q Error X \bigotimes

score 40 MCC - - Full-Prec 20 -Case 1 Case 2 0 800 1200 1600 400 0 Iteration Accuracy curve in QAT (BERT-base, CoLA Task)

2.5

2

1.5

0.5

Transformers.

CE Loss

TernaryBERT + TI

-0.50 -0.25 0.00 0.25 0.50

Case 2: No quantize attention sub-layers \Rightarrow Propagation of Q Error O \bigcirc

Teacher Intervention (TI) : step-by-step reconstruction of sub-layers of Transformer

- Step 1: QAT with TI (Few-Steps)
- Step 2: QAT with KD

2-2. Teacher Intervention

Step 1 (QAT w/ TI)

 \bullet

Step 2 (QAT w/o TI)

Illustration of Teacher Intervention (TI-M, TI-O)

3. Experiments

Two-Step QAT with Teacher Intervention (Cross-Entropy Loss Curve)

Summary

Quantization below 2-bit -> considerable accuracy degradation

due to unstable convergence in few-sample Fine-Tuning.

Teacher Intervention (TI): proactive knowledge distillation

method for fast converging QAT of ultra-low precision (2 bit)

TI achieves superior accuracy with significantly lower fine-

tuning iterations (up to x12.5) on Transformers of NLP (BERT)

as well as computer vision (ViT) compared to SOTA QAT methods

