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1. Background and Motivation
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Quantization Aware Training (QAT) with Knowledge Distillation
[Zhang et al, TernaryBERT, EMNLP 2020]
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MSE Loss at the output of Transformer layers

Loss landscape visualization of a 
fine-tuned Transformer

2. Methods

Propagation of Quantization Error!

• Quantization (QAT) & Knowledge Distillation (KD) 
: KD provides extra guidance for low precision (2-bit) quantization

• Prior works suffer noticeable accuracy degradation and require 
increased iterations for fine-tuning in few-sample tasks

MHA MLP

3. Experiments

• Quantization below 2-bit  -> considerable accuracy degradation 
due to unstable convergence in few-sample Fine-Tuning.

• Teacher Intervention (TI): proactive knowledge distillation 
method for fast converging QAT of ultra-low precision (2 bit) 
Transformers.

• TI achieves superior accuracy with significantly lower fine-
tuning iterations (up to x12.5) on Transformers of NLP (BERT)  
as well as computer vision (ViT) compared to SOTA QAT methods

Summary

QAT performance of TernaryBERT and number of iterations
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💡: Propagating impact of quantization error along the layers

• Case 1: Intervene student’s attention output 
with the teacher’s (TI-O) + Quantize all
Þ Propagation of Q Error X 

• Case 2: No quantize attention sub-layers
Þ Propagation of  Q Error O 😔

🤗

• Teacher Intervention (TI) : step-by-step 
reconstruction of sub-layers of Transformer

• Step 1: QAT with TI (Few-Steps)
• Step 2: QAT with KD

Fine-Tuning time vs Accuracy
of quantized BERT

• TI achieves higher accuracy within 
shorter fine-tuning time

• TI flattens the loss surface of QAT

Rapidly Converge to FP!
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2-1. Case Study

2-2. Teacher Intervention
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